Multiphase Flow Meter Calibration
DeepCI introduces a novel deep learning driven time-series predictive and optimization model for uncertainty growth prediction and calibration intervals optimization
DeepCI’s developed technology addresses the limitations of
state-of-the-art mathematical/statistical uncertainty growth and calibration intervals
predictive methods such as limited modelling assumptions, limited learning, lack of
ability to deal with non-linear complex behaviours, and poor scalability. State-of-the-art literature reveals that it is difficult to solve the calibration
optimization equation in closed form.
DeepCI’s deep
learning and optimization-driven method is capable of acquiring global or near optimal
calibration intervals - achieving desired performance with minimum total end-to-end cost or
utility function (i.e. sum of financial and measurement cost)). Our developed model learns
instrument uncertainty behaviour over time and acquire optimal calibration intervals - meeting in-tolerance
percentage or equipment functioning capability within expected tolerance limits at the time of
use. Contact us for more details!
Contact Us
We’re here
20/1 Parkside Terrace, Edinburgh EH16 5XW
E: [email protected]
Give us a call or drop by anytime, we endeavour to answer all enquiries within 24 hours on business days.
We are open from 9am — 5pm week days.